
 Available online at www.ijpe-online.com

vol. 18, no. 3, March 2022, pp. 149-157

DOI: 10.23940/ijpe.22.03.p1.149157

* Corresponding author.

E-mail address: ewong@utdallas.edu

Empirical Research for Self-Admitted Technical Debt Detection in

Blockchain Software Projects

Yubin Qua,b, W. Eric Wongc,*, and Dongcheng Lic

aGuangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin, 541004, China

bSchool of Information Engineering, Jiangsu College of Engineering and Technology, Nantong, 226001, China
cDepartment of Computer Science, University of Texas at Dallas, Richardson, 75080, USA

Abstract

Blockchain technology has been used in various fields including digital currencies, distributed storage, and more. The issue

of SATD detection for open source blockchain software systems has not been studied. We provide an in-depth analysis of the

code comments of open blockchain source software projects. A pre-trained model based on cost-sensitivity is proposed, which

is compared with the baseline model on several evaluation metrics. The results were statistically analyzed. The results show

that the pre-trained model based on natural language understanding is able to achieve better classification performance. Our

method improves 102% over the baseline method in the F1 metric.

Keywords: self-admitted technical debt; blockchain; pretrained model

© 2022 Totem Publisher, Inc. All rights reserved.

1. Introduction

In 2008 Bitcoin technology was created as a new type of digital currency [1]. Currently Bitcoin has become the world's most

important digital currency. This digital currency uses blockchain technology, which makes transactions between different

entities transparent, distributed, and has the important characteristic of being tamper-proof. With this, blockchain technology

extends to various fields including the Internet of Things [2], smart contracts [3,4], supply chain management [5], and many

other applications. To quickly develop and deploy new blockchain software systems, many application developers directly

use software frameworks shared on GitHub, such as Bitcoin1, go-ethereum2, etc. Software framework developers focus on

how to implement the various complex algorithms in blockchain technology and refactor the code for algorithm upgrades.
Application developers are concerned with directly calling open source blockchain technology frameworks to implement their

own business.

Developers of blockchain frameworks are expected to deliver high quality bug-free software frameworks. This is very

critical as studies have shown that failures caused by software bugs can have very severe consequences including property

damage, monetary loss, etc. [6,7|. However, the reality is that due to time constraints, testing resource constraints, or other

factors, blockchain frameworks often have pending code or sub-optimal code known as technical debt [8]. Technical debt was

first introduced by Cunningham in 1993 and describes this situation [9]. Technical debt that is actively introduced by the

software framework development programmer in code comments is known as self- admitted technical debt (SATD) [10-14].

Qu et al. have opened up a dataset of self-admitted technical debt for blockchain software systems on GitHub3, and their

research shows that there are various technical debts for blockchain software systems. However, they did not conduct further

in-depth research on the dataset to explore how to detect self-admitted technical debt more effectively. Guo et al. show through
empirical research that the detection of self-introduced technical debt can be effectively performed using a simple but

extremely effective method. This classification method is based on the presence of a large number of indicator tags in the

1 https://github.com/bitcoin/bitcoin
2 https://github.com/ethereum/go-ethereum
3 https://github.com/qyb156/blockchain_SATD_research

http://www.ijpe-online.com/
https://github.com/bitcoin/bitcoin

150 Yubin Qu, W. Eric Wong, and Dongcheng Li

code annotations. Whether this conclusion holds true for blockchain software systems is open to investigation [15].

To help application developers detect self-admitted technical debt in code comments more effectively, we have

conducted an in-depth exploration of open source datasets for blockchain software systems. The main problem that our

research focuses on is how to design more effective systems for detecting self-admitted technical debt.

The remainder of this paper is structured as follows. Section 2 presents the related work of our study, including the

research works on blockchain software projects and research works on self-admitted technical debt. Section 3 presents our

research approach. Section 4 depicts the experimental setup. We also compare the findings in our work with the findings in
previous work. Finally, Section 6 concludes our study and presents future work.

2. Related Work

2.1. Blockchain Software Projects

Blockchain technology is a decentralized, tamper-proof, and transparent chain storage technology [16]. Blockchain

technology stores a series of blocks, each of which contains transaction information as well as unique hash information. A

hash value is generated by a specific algorithm [17]. Each block's hash value is calculated based on the block's data, the current

timestamp, and the hash value of the previous block. When the information in one of the blocks changes, the information in

the following block immediately will also change. This prevents the blockchain from being tampered with maliciously [18].

In a large blockchain network, tampering with the blockchain through collusion is essentially impossible [19]. All nodes in a

blockchain network system can simultaneously go looking for the next writable block. This search process is known as mining.
The computation process needs to follow a specific algorithm and is called verifying completion when specified requirements

are met. The node that finds a block is rewarded with a certain amount of tokens. The difficulty of mining is determined by a

predefined algorithm [20]. There is no control center in a blockchain network and the underlying principle is that each

participant is equal and together they make up the blockchain network system. The completion of transactions between the

network nodes is achieved through a mediation mechanism. A prerequisite for a block to be validated is that the majority of

participants accept the current block as trustworthy and genuine. Therefore, once a block has been verified, it is almost

impossible to tamper with it.

The most successful application of blockchain technology in the field of digital currencies is bitcoin. Bitcoin uses peer-

to-peer technology to achieve a decentralised operation. Managing transactions as well as issuing currency is done using a

collaborative approach of participants. The bitcoin core project is currently one of the most popular open source projects on

GitHub. The project provides users with an interface service that allows them to quickly call the digital currency.

Another innovative application of blockchain technology is the smart contract system. This system fixes the transaction

information between buyers and sellers in a self-executing contract via software code. Inside a decentralised environment,

trusted anonymous participants who are allowed to run the contract can do so, when the preconditions are met. As the contract

is deployed in a distributed environment, it is also transparent, traceable and untamperable. Go-ethereum is one of the most

popular open source blockchain software projects in GitHub. Go-ethereum is the official golang implementation of the

Ethereum protocol.

2.2. Self-Admitted Technical Debt Detection

Technical debt was first introduced by Cunningham in 1993 and describes this situation [9]. Potdar and Shihab introduce a
new way to identify technical debt. This technical debt is derived from code annotations and is referred to as self-admitted

technical debt [10]. It has been shown that SATD is prevalent in software projects and can be used to detect different types of

technical debt (e.g. design, defects, etc.) [12]. The intuition tells us that the presence of software code with technical debts

inevitably affects software quality and even brings about software defects [21]. Sultan et al. show through empirical studies

in open source software projects that software defects are not related to SATD. However, the existence of SATD makes the

evolution of future software code more complex [14].

Since SATD can make software development more complex and can introduce potential software defects, SATD

detection has long been a focus of academic research. To predict the presence of SATD in a target project, it is common

practice to first obtain code comments in historical software projects in order to construct a training dataset [22]. Tools for

obtaining code annotations include JDeodorant [23] et al. Next, the training dataset is manually annotated by experienced
programmers. The model is trained on this labelled data using techniques such as pattern recognition, natural language

processing techniques, deep learning techniques, and so on. Finally, during the software development process, the training

Empirical Research for Self-Admitted Technical Debt Detection in Blockchain Software Projects 151

model is called on the target code comments to obtain the classification labels (SATD, or non-SATD). The SATD detection

problem can therefore be reduced to a typical machine learning binary classification problem.

Since the introduction of SATD, a number of medium automation techniques have been used to detect SATD, and we

will now highlight a few common detection methods.

Potdar et al. et al. proposed a pattern matching approach to detect SATD [10]. Specifically, they read 101,762 code

annotations and summarized 62 SATD patterns. Each pattern is a word or phrase (e.g., stupid, get rid of this), as these phrases

often appear in code comments containing SATD. The process of detection is to see if a particular pattern exists in the target
code annotation. If a pattern is present, it is marked as SATD, otherwise it is marked as non-SATD. This method has a low

recall and can identify only some SATD.

To address the limitations of pattern matching methods, Maldonado et al. [13] proposed natural language processing

techniques to detect SATD. They collected datasets from 10 open source software projects. They filtered and manually

labelled the dataset as SATD or non-SATD. The maximum entropy classifier was trained to detect SATD. Their results show

that better classification results can be achieved with a small amount of training data.

Huang et al. proposed the use of text mining to detect SATD [24]. They first pre-processed the code comments using

natural language processing techniques, including word separation, deactivation, and word stemming. To reduce the problems

associated with the curse of dimensionality, they performed feature selection using information gain techniques. Next on the
training dataset, Naïve Bayes Multinomial models were trained. Predictions were made for each code comment for a particular

software project. Their experiments showed that the method outperformed pattern matching methods.

As the text mining method proposed by Huang et al. is not interpretable, Ren et al. proposed a TextCNN-based SATD

detection method [22,25]. The method learns domain-related semantic vectors from the training dataset, and the deep

semantics of the code annotations can be obtained by stitching the different semantic vectors through multiple convolutional

kernels. Finally, the semantic vectors are classified by a fully-connected model. The model can also learn interpretable patterns

from semantic vectors, thus reducing the workload of SATD pattern annotation. This method is the state-of-the-art approach

that works well in performance, generalizability, and explainability.

Guo et al. conducted an observational study of open datasets and found that four representative task marker phrases (e.g.,
todo, fixme, XXX, hack) were prevalent in the code comments of JAVA software projects, and that these phrases could be

used to classify SATD. They therefore propose a simple heuristic taxonomy method which classifies the target code comments

by matching the flag phrases. This is done by first pre-processing the code comments in the target items. All code comments

are converted to lower case and English characters are retained. The next step is to perform fuzzy matching, and as long as

any of the four flag phrases are present in the code annotation, the code comment is considered with SATD. Their experimental

results show that the method is effective in classifying SATD and can be used as a baseline method for SATD classification.

2.3. Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers (BERT) [26] is a pre-training technique proposed by Google for

natural language processing. BERT has shown excellent performance on a variety of tasks in natural language understanding.

Unlike context-independent models such as word2vec, BERT is able to use different vector representations for different words
in different contexts. For example, water is represented as the same word vector for "plants need water" and "there is water in

the report". In BERT, water is represented differently in the two sentences.

3. Our Research Approach

3.1. The Motivation of using Pre-Trained Models

Developers of blockchain system frameworks will often introduce SATD in code comments to remind themselves to repay

that debt in subsequent software development. For example, in the Bitcoin project, the code comment "wouldn't support bip

68" implies that there is a technical debt of compatibility. In the project, the code comment "todo: why do we flip around the

recovery id?" implies that there is a technical debt of defect. To correctly predict code comments, the classifier needs to
decompose the internal features of the code comments in order to provide a decision basis for prediction.

Based on the simple code annotation example we have provided, we need to address several key issues in order to make

a correct prediction about whether the code comment contains SATD or not. There are a number of indicative words that can

152 Yubin Qu, W. Eric Wong, and Dongcheng Li

be used to mark the presence of SATD in code comments, for example, todo, xxx, hack, fixme, etc. Other words or phrases,

such as error, perhaps, maybe, error, etc., are also likely to indicate the presence of SATD in a code comment, so pattern

matching and text mining [24] cannot be used to effectively classify code comments. Second, code comments have an

indeterminate sentence length. Text mining techniques cannot effectively handle code comments with inconsistent sentence

lengths. Variable-length code comments are also a challenge for other classifiers. Third, neither text mining nor the classifiers

based on convolutional neural networks can effectively address the problem of contextual semantics in code comments. Ren

et al. use convolutional neural networks to learn deep semantics in code comments using word embeddings, which are able to

obtain word vector representations from pre-trained datasets. However, it was unable to address the potential contextual

semantic issues in the code annotations. Finally, we also need to consider the class imbalance that naturally exists in the
training dataset as well as in the target dataset. The code comments containing SATD represent a very small proportion. Most

of the code comments are without SATD. This is something we should be particularly aware of when selecting classifiers.

To address the above challenges, we use a cost-sensitive pre-trained model for SATD detection. BERT was used as our

classifier. Large-scale pre-trained models, such as BERT, have recently achieved great success and have become a milestone

in the field of artificial intelligence. With sophisticated and huge model parameters, pre-trained models are able to capture

knowledge from both large scale labelled and unlabelled datasets. By storing this knowledge in a complex network and fine-

tuning on a specific task, downstream classification tasks that have acquired rich semantic knowledge can achieve better

classification results. BERT is able to better learn the contextual semantics of the code annotations and thus classify SATD

more accurately. We use a cost-sensitive weighted loss function to the class imbalance problem in SATD detection, giving

more weight to code comments containing SATD.

3.2. Approach

Based on the open dataset shared by ourselves for blockchain software projects, a new type of SATD, resource debt, was

found. Moreover, code comments with task tags do not completely determine whether the code comment contains SATD.

Thus we argue that, due to the presence of complex natural language features in the code comments, better classification

results should be achieved using the currently widely used pre-trained models. To address the class imbalance problem, we

use a weighted cross-entropy loss function in our pre- trained model.

Figure 1. The framework of our approach

As shown in Figure 1, our approach includes three main steps: fine-tune BERT on history source comments, train the

model based on weighted loss function, and predict labels on target software comments. Predicting whether a code annotation
contains SATD can be reduced to a binary classification problem. The core of our approach is to fine-tune the BERT model

using historical code comment data. In the training phase of the model, we select n of the projects as the training dataset and

the remaining ones as the test dataset. The BERT is fine-tuned on the training dataset according to the SATD distribution, and

finally a classification model is obtained based on a weighted loss function. Finally, the performance of our classifier is tested

on the test dataset.

3.2.1. The Architecture of BERT

The main structure of the BERT is the transformer. Each layer of the BERT is made up of multiple standard encoders. Each

encoder is generated by a multi-Head-Attention, Layer Normalization, feedforward, and Layer Normalization. This results in

the ability to predict the token of the mask based on the context of the input text, thus capturing the bidirectional relationship.

By using the self-attention mechanism, problems such as the inability to accelerate serialized data in the GPU can be solved;
in addition, since the correlation between each word and all words in the sentence is calculated, the length dependency problem

in RNN networks can be effectively solved. This enables the capture of the semantics of each word in the code comment.

Through the multi-head attention mechanism, the semantic representation of the input sentence is obtained from multiple

perspectives. By concatenating multiple outputs into a single semantic vector, a deep semantic representation of the sentence

is obtained. Inside the BERT model, the multilayer encoder obtains a deep representation of the surface, phrase, syntactic and

semantic levels of the sentence.

Empirical Research for Self-Admitted Technical Debt Detection in Blockchain Software Projects 153

The next step is to fine-tune the model on the labelled code comment data. A [cls] symbol is added in front of each code

comment input to indicate whether the code comment contains SATD. This symbol is used to indicate whether the code

annotation contains SATD, and the output of the vector corresponding to this symbol is used as the semantic representation

of the entire code comment. We can assume that this semantic representation learns the relevant semantic information from

the code comments.

3.2.2. Weighted Loss Function

Assuming that the input code comment belongs to class i and its corresponding true label is t, the corresponding output

probability is y. The cross-entropy function loss = −∑ 𝑡𝑖 log⁡(𝑦𝑖). This loss function calculates the degree of deviation

between the predicted probability and the true value of the code comments in the training set. However, this cross-entropy

loss function cannot be used directly for SATD detection. In the dataset we studied, the code comments containing SATD

were much smaller than the code comments without SATD.

In our study, we propose to use the weighted loss function in BERT. We set a weight for each class, assuming that the

number of code comments containing SATD in the training dataset is m and the number of code comments without SATD is

n. Then, we define the weight of code comments containing SATD as n/(m+n) and the weight of code comments without

SATD is m/(m+n). Then the loss function is denoted as:

loss = −(∑(
𝑚

𝑚+𝑛
𝑡𝑛𝑜𝑛−𝑆𝐴𝑇𝐷 log(𝑦𝑛𝑜𝑛−𝑆𝐴𝑇𝐷) +

𝑛

𝑚+𝑛
𝑡𝑆𝐴𝑇𝐷log⁡(𝑦𝑆𝐴𝑇𝐷))).

In this improved loss function, we give more weight to code comments labelled to be SATD, penalizing those labelled

to be non-SATD.

3.2.3. Model Training

The training process for the code comments is a multi-round optimisation process in which the loss function of the predicted

versus true values of the code comments is calculated at each epoch of optimisation, and the network parameters for each

encoder are updated according to the back propagation algorithm. The gradient optimisation algorithm uses the Adam

algorithm.

3.2.4. SATD Prediction

Once we have fine-tuned the BERT model, we can classify the code comments in the test dataset. The pre-processed code

comments are fed into our trained model and the categories with higher prediction probability are used as prediction categories
for the code comments.

4. Experimental Design

4.1. Data Collection

To investigate in depth the performance of classifiers for SATD detection in blockchain software projects, we conducted an

empirical study on an open dataset. We have collected the open source blockchain framework projects on GitHub. These

projects cover multiple fields, from cryptocurrency to distributed storage and medical health. The selection of these projects

follows the development sequence of blockchain technology, including both early cryptocurrency projects and the application

framework of blockchain technology that has been more active in recent years. We first chose the two most popular
cryptocurrency projects, including Bitcoin4and Ethereum5 projects. Then we select 4 other projects on GitHub, based on the

fact that these 4 projects have won a large number of "stars" from other developers. These "stars" means that these 4 projects

are widely used by developers. These 4 projects include chia-blockchain6, diem-libra-core7, fabric8, and solidity9. Table 1

describes the blockchain projects used in our research, including the name of the project, the code version used, the total

number of lines in the project, the programming language used in the project and stars from GitHub. The bitcoin project is an

4 https://github.com/bitcoin/bitcoin
5 https://github.com/ethereum/go-ethereum
6 https://github.com/Chia-Network/chia-blockchain
7 https://github.com/diem/diem
8 https://github.com/hyperledger/fabric
9 https://github.com/ethereum/solidity

154 Yubin Qu, W. Eric Wong, and Dongcheng Li

experimental digital currency. The Ethereum project is official Golang implementation of the Ethereum protocol. The diem

project is a decentralized, programmable database. The solidity project is a statically typed, contract-oriented, and high-level

language. The fabric project is a platform for distributed ledger solutions. The chia project is a modern cryptocurrency. For

the Bitcoin, solidity, and chia projects, we utilize the sloccount10 to calculate the total source lines of code, following previous

study by Maldonado. For the remaining three projects, we developed a Python-based program to count the total number of

lines of code.

Table 1. Summary of the Studied Projects. For each project, we present the used version, the total number of lines of code, the main programming

languages, stars, and application area.

Project Release #Line of Code Languages Stars Application Area

bitcoin 22 221466 C++,Python 58.9K an experimental digital currency .

Ethereum 1.10.12 394246 go 33.3K
Official Golang implementation

of the Ethereum protocol.

diem
1.0.2 227505 Rust 16.2K a decentralized, programmable database.

solidity 0.8.10 224404 C++,Solidity, Python 13K
a statically typed, contract-oriented,

high-level language.

fabric 2.3.3 1109729 go 12.8K a platform for distributed ledger solutions.

chia 1.2.7 62232 Python 9.5K a modern cryptocurrency .

Next we downloaded the source code of six software projects and used the code comment extraction tool to obtain the

code comments for each project. After filtering unrelated source comments, we manually labelled all the instances. Three

experienced programmers were invited to label the data and perform statistical analysis, and the final statistics proved that

there was strong consistency of the three individuals.

4.2. Baseline Method

Due to the simplicity of MAT, proposed by Guo et al. [15], it can be as a baseline approach in SATD detection. The MAT

approach is simple to describe, implement, and interpret. The MAT approach can offer a comparable performance to standard

approaches. Other SATD detection approaches, including Pattern Match [12], NLP [13], TM [24], and CNN [22], may be

hard to reproduce due to its complex structure and parameters. For blockchain software projects, as shown in Table 2, there

are many task tags in files. The MAT is a simple-yet-effective baseline approach. There are two phrases in the MAT approach,
"preprocessing" and "fuzz matching". After preprocessing the source comments, a list of tokenized and stemmed words are

generated. Then, the preprocessed token list is matched with task tags. A comment is considered indicating SATD if and only

if there is at least one task tag ("todo", "fixme", "xxx" or "hack") that occurs in the corresponding token list.

Table 2. The Detailed Number of Sampled Instances That Contain Each Task Tag on Each Project

Project SATD Types #Count todo fixme xxx hack #All Tags #Percent

bitcoin

SATD 1201 143 0 0 5 148 12.32%

WITHOUT_SATD 28205 1 2 7 7 17 0.06%

Ethereum

SATD 708 120 2 6 2 132 18.64%

WITHOUT_SATD 40780 72 0 0 18 58 0.22%

diem

SATD 446 212 1 8 6 227 50.90%

WITHOUT_SATD 12411 112 2 9 10 133 1.07%

solidity

SATD 503 3 0 0 0 3 0.60%

WITHOUT_SATD 1267 1 0 0 0 1 0.08%

fabric

SATD 806 386 7 12 4 409 50.74%

WITHOUT_SATD 36392 170 1 72 16 259 0.71%

chia

SATD 207 71 0 0 3 74 35.75%

WITHOUT_SATD 2504 7 0 0 2 9 0.36%

10 https://dwheeler.com/sloccount/

Empirical Research for Self-Admitted Technical Debt Detection in Blockchain Software Projects 155

4.3. Evaluation Metrics

To investigate the impact of different approaches, we consider the following performance measures: precision, recall,

and F1-measure. These performance evaluation measures have been used in previous studies for evaluating the results of

experiments on the imbalanced datasets [12,13,22,24]. For a binary classification problem, the confusion matrix is shown in

Table 3 for SATD detection.

Table 3. Confusion matrix for SATD detection

Actual value Predicted value SATD NON-SATD

SATD True SATD False NON-SATD

NON-SATD False SATD True NON-SATD

⁡precision =
True⁡SATD

True⁡SATD+ False⁡SATD

recall =
True⁡SATD

True⁡SATD+ False⁡NON− SATD

F1− measure⁡ =
2 ∗ ⁡precision ∗ ⁡recall⁡

(precision + recall⁡)
⁡

The precision is used to indicate the proportion of SATD that are correctly classified as SATD among those classified

as SATD comments. The recall is used to indicate the proportion of SATD that are correctly classified as SATD among those
true SATD comments. The F1-measure is a summary measure that combines both precision and recall.

4.4. Experimental Environment

The experimental environment is a workstation equipped with Nvidia RTX 2700 GPU, Intel(R) Core(TM) i7-10700K CPU

and 64GB RAM, running Windows 10 Professional.

5. Experimental Results

Figure 2. Comparison for BERT and MAT using evaluation metrics"

The comparison for BERT and MAT using evaluation metrics is shown in Figure 2. We show that our approach can get better

classification performance using cross-project classification when a new software project is started. The code comments of 5

projects are selected as training data and validation data, and the remaining one project is used as test data. Therefore, there

are 6 experiments for different classification models. 90% of the project comments of the 5 projects are randomly selected as

training data, and the other 10% are used as validation data. For every experiment, precision, recall, and F1-measure are

computed on test data. In addition, the Wilcoxon Signed-rank test is used to test whether the differences of precision, recall,

and F1-measure in the 6 experiments are statistically significant at the p-value <0.05. Finally, Cohen’s d effect size is used to
quantify the amount of difference. For different effect sizes, it represents the diversity between related methods. The difference

is considered Small (d=0.2), medium (d =0.5), or large (d =0.8).

156 Yubin Qu, W. Eric Wong, and Dongcheng Li

From Figure 2, our proposed cost-sensitive pre-training model outperforms the baseline classification method. From the

median calculation, the precision metric improved by 36.25%; the recall metric improved by 172.4%; and the F1 metric

improved by 102% over the baseline method. The Wilcoxon Signed-rank test shows that the differences of F1-measure in the

6 projects are statistically significant at the p-value <0.05. Cohen’s d effect size in F1-measure is 0.89, which shows that there

is a bigger difference between the two models.

A comparison of the experimental results shows that our classification method far exceeds the baseline classification

method. The method proposed by Guo et al. is based on JAVA open source projects. Developers developing these open source

projects can get more convenient development aids due to development tools such as Eclipse. Programs can more easily
introduce code comments with task tags. For the blockchain software projects, however, there are no similar development

aids. Therefore, techniques based on deep understanding of natural language processing are more likely to achieve better

classification performance. This also implies to us that we should choose a more suitable classification model for different

types of software projects when detecting SATD.

6. Conclusion

Blockchain technology has been used in various fields, including digital currencies, distributed storage, and more. We provide

an in-depth analysis of the code comments of open blockchain source software projects. A pre-trained model based on cost-

sensitivity is proposed, which is compared with the baseline model on several evaluation metrics. The results were statistically

analyzed. The results show that the pre-trained model based on natural language understanding is able to achieve better
classification performance. Our method improves 102% over the baseline method in the F1 metric. This also foreshadows

that we should consider using pre-trained models more when detecting SATD for blockchain software projects.

In the future we will apply our proposed method to other areas to validate the generalization capability of the method.

In addition, we will also focus more on deep learning classification models for SATD detection to improve the performance

of SATD classifiers in blockchain software systems.

Acknowledgements

This work was supported by Philosophy and Social Science Research Projects in Jiangsu (2020SJB0836), Nantong Science

and Technology Project (JC2021124), Guangxi Key Laboratory of Trusted Software (kx202046, kx202013), Scientific

Research Projects of Jiangsu College of Engineering and Technology (GYKY/2020/4), Research Project of Modern

Educational Technology in Jiangsu Province (2021-R-94735), Special Project of China Higher Education

Association(21SZYB23) . Sponsored by Special Foundation for Excellent Young Teachers and Principals Program of

Jiangsu Province and Qing Lan Project of Jiangsu province.

References

1. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, pp. 21260, 2008.
2. Huh, S., Cho, S., and Kim, S. Managing IoT Devices using Blockchain Platform. In 2017 19th international conference on

advanced communication technology (ICACT), IEEE, pp. 464-467, 2017.
3. Delmolino, K., Arnett, M., Kosba, A., Miller, A., and Shi, E. Step by Step towards Creating a Safe Smart Contract: Lessons and

Insights from a Cryptocurrency Lab. In International conference on financial cryptography and data security, Springer, Berlin,
Heidelberg, pp. 79-94, 2016.

4. Li, D., Wong, W.E., Zhao, M. and Hou, Q. Secure Storage and Access for Task-Scheduling Schemes on Consortium Blockchain
and Interplanetary File System. In 2020 IEEE 20th International Conference on Software Quality, Reliability and Security

Companion (QRS-C), pp. 153-159, IEEE, December 2020.
5. Korpela, K., Hallikas, J., and Dahlberg, T. Digital Supply Chain Transformation toward Blockchain Integration. In proceedings

of the 50th Hawaii international conference on system sciences, 2017.
6. Wong, W.E., Li, X. and Laplante, P.A. Be more familiar with our enemies and pave the way forward: A review of the roles bugs

played in software failures. Journal of Systems and Software, vol. 133, pp. 68-94, November 2017.
7. Wong, W.E., Debroy, V., Surampudi, A., Kim, H. and Siok, M.F. Recent catastrophic accidents: Investigating how software was

responsible. In 2010 Fourth International Conference on Secure Software Integration and Reliability Improvement. pp. 14-22,
IEEE, June 2010.

8. Liu, J., Huang, Q., Xia, X., Shihab, E., Lo, D., and Li, S. Is using Deep Learning Frameworks Free? Characterizing Technical
Debt in Deep Learning Frameworks. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering:
Software Engineering in Society, pp. 1-10, 2020.

9. Cunningham, W. The WyCash Portfolio Management System. ACM SIGPLAN OOPS Messenger, vol. 4, no. 2, pp. 29-30, 1992.
10. Potdar, A. and Shihab, E. An Exploratory Study on Self-admitted Technical Debt. In 2014 IEEE International Conference on

Software Maintenance and Evolution, IEEE, pp. 91-100, 2014.

Empirical Research for Self-Admitted Technical Debt Detection in Blockchain Software Projects 157

11. Bavota, G. and Russo, B. A Large-scale Empirical Study on Self-admitted Technical Debt. In Proceedings of the 13th international
conference on mining software repositories, pp. 315-326, 2016.

12. Maldonado, E.D.S. and Shihab, E. Detecting and Quantifying Different Types of Self-admitted Technical Debt. In 2015 IEEE
7Th international workshop on managing technical debt (MTD), IEEE, pp. 9-15, 2015.

13. da Silva Maldonado, E., Shihab, E., and Tsantalis, N. Using Natural Language Processing to Automatically Detect Self-admitted
Technical Debt. IEEE Transactions on Software Engineering, vol. 43, no. 11, pp. 1044-1062, 2017.

14. Wehaibi, S., Shihab, E., and Guerrouj, L. Examining the Impact of Self-admitted Technical Debt on Software Quality. In 2016
IEEE 23Rd international conference on software analysis, evolution, and reengineering (SANER), IEEE, vol. 1, pp. 179-188,
2016.

15. Guo, Z., Liu, S., Liu, J., Li, Y., Chen, L., Lu, H., and Zhou, Y. How Far have we Progressed in Identifying Self-admitted Technical

Debts? A Comprehensive Empirical Study. ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 30,
no. 4, pp. 1-56, 2021

16. Bosu, A., Iqbal, A., Shahriyar, R., and Chakraborty, P. Understanding the Motivations, Challenges and Needs of Blockchain
Software Developers: A Survey. Empirical Software Engineering, vol. 24, no. 4, pp. 2636-2673.

17. Jakobsson, M. and Juels, A. Proofs of Work and Bread Pudding Protocols. In Secure information networks, Springer, Boston,
MA, pp. 258-272, 1999

18. Li, D., Wong, W.E. and Guo, J. A survey on blockchain for enterprise using hyperledger fabric and composer. In 2019 6th
International Conference on Dependable Systems and Their Applications (DSA), pp. 71-80, IEEE, January 2020.

19. Narayanan, A., Bonneau, J., Felten, E., Miller, A., and Goldfeder, S. Bitcoin and cryptocurrency technologies: a comprehensive

introduction. Princeton University Press, 2016.
20. Chuen, D.L.K. ed. Handbook of digital currency: Bitcoin, innovation, financial instruments, and big data. Academic Press, 2015.
21. Kruchten, P., Nord, R.L., Ozkaya, I., and Falessi, D. Technical debt: towards a crisper definition report on the 4th international

workshop on managing technical debt. ACM SIGSOFT Software Engineering Notes, vol. 38, no. 5, pp. 51-54, 2013.
22. Ren, X., Xing, Z., Xia, X., Lo, D., Wang, X., and Grundy, J. Neural Network-based Detection of Self-admitted Technical debt:

From Performance to Explainability. ACM transactions on software engineering and methodology (TOSEM), vol. 28, no. 3, pp.
1-45, 2019.

23. Tsantalis, N., Chaikalis, T., and Chatzigeorgiou, A. JDeodorant: Identification and Removal of Type-checking Bad Smells. In

2008 12th European conference on software maintenance and reengineering, IEEE, pp. 329-331, 2008.
24. Huang, Q., Shihab, E., Xia, X., Lo, D., and Li, S. Identifying Self-admitted Technical Debt in Open Source Projects using Text

Mining. Empirical Software Engineering, vol. 23, no. 1, pp. 418-451, 2018.
25. Chen, Y. Convolutional neural network for sentence classification, Master's thesis, University of Waterloo, 2015.
26. Devlin, J., Chang, M.W., Lee, K., and Toutanova, K. Bert: Pre-training of Deep Bidirectional Transformers for Language

Understanding. 2018, arXiv preprint arXiv:1810.04805.

Yubin Qu received the B.S. and M.S. degrees in Computer Science and Technology from Henan Polytechnic University in

China in 2004 and 2008. Since 2009, he has been a lecture with Information Engineering Institute, Jiangsu College of

Engineering and Technology. He is the author of more than 10 articles. His research interests include software maintenance,

software testing and machine learning.

W. Eric Wong received the M.S. and Ph.D. degrees in computer science from Purdue University. He is currently a Full

Professor and the Founding Director of the Advanced Research Center for Software Testing and Quality Assurance in

Computer Science, The University of Texas at Dallas (UTD). He also has an appointment as a Guest Researcher with the
National Institute of Standards and Technology (NIST), Agency of the US Department of Commerce. Prior to joining UTD,

he was with Telcordia Technologies (formerly Bellcore) as a Senior Research Scientist and the Project Manager, where he

was in charge of dependable telecom software development. In 2014, he was named the IEEE Reliability Society Engineer of

the Year. His research interest includes helping practitioners improve the quality of software while reducing the cost of

production. In particular, he is working on software testing, debugging, risk analysis/metrics, safety, and reliability. He has

very strong experience developing real-life industry applications of his research results. He is the Editor-in-Chief of IEEE

TRANSACTIONS ON RELIABILITY. He is also the Found-ing Steering Committee Chair of the IEEE International

Conference on Software Quality, Reliability, and Security (QRS).

Dongcheng Li received the BS degree in computer science from University of Illinois at Springfield and the MS degree in

software engineering from the University of Texas at Dallas. He is currently working toward the PhD degree at the University
of Texas at Dallas. His research focus is on search-based software engineering and intelligent optimization algorithms.

